如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将

如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°... 如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(-8,0),直线BC经过点B(-8,6),C(0,6),将四边形OABC绕点O按顺时针方向旋转α度(0<α≤180°)得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于P、Q.在四边形OABC旋转过程中,若BP=B′Q,则点P的坐标为(-23,6)(-23,6). 展开
 我来答
稀情尘世1883
2014-12-29 · 超过57用户采纳过TA的回答
知道答主
回答量:102
采纳率:75%
帮助的人:54.6万
展开全部
解答:解:如图,连接OB、OQ、OB′,
∵四边形OABC绕点O按顺时针方向旋转得到四边形OA′B′C′,
∴OB=OB′,∠OBC=∠OB′激并尘C,
在△OBP和△OB′Q中,
OB=OB′
∠OBC=∠OB′C
BP=B′Q

∴△OBP≌△OB′Q(SAS),
∴OP=OQ,
∵直线BC经过点蔽腔B(-8,6),C(0,6),
∴BC⊥y轴,
∴CP=CQ,
∵BP=B′Q,B′C′=BC,
∴BC-BP=B′C′-B′Q,
即CP=C′Q,
∴CP=CQ=C′Q,
又∵OP=OQ(已证),
∴△OCP≌△OCQ≌△OC′Q(HL),
∴∠COP=∠COQ=∠C′OQ,
∴∠OCP=
1
3
×90°=30°,
∵C(0,6),
∴OC=6,
PC=OC?tan∠COP=6×
3
3
=2
3

∴点P的坐标为(-2
3
,6).
故答案为:(-2
3
,明禅6).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式