在△ABC中,求证:S△ABC=a^2/[2(cotB+cotC)]

 我来答
司湘向婀
2020-08-27 · TA获得超过1160个赞
知道小有建树答主
回答量:1714
采纳率:100%
帮助的人:7.9万
展开全部
S△ABC=1/2absinC
=1/2a^2*(b/a)*sinC
=1/2a^2*(sinB/sinA)*sinC
=1/2a^2*sinB*sinC/sinA
=1/2a^2*sinB*sinC/sin(B+C)
=1/2a^2*sinB*sinC/(sinBcosC+cosBsinC)
=1/2a^2/(sinBcosC/sinB*sinC+cosBsinC/sinB*sinC)
=1/2a^2/(cosC/sinC+cosB/sinB)
=1/2*a^2/(cotB+cotC)
=a^2/[2(cotB+cotC)]
你从下往上看就知道了这证明得推算步骤.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式