如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,AD=PD=2,E,F,G分别为PC,PD,CB的中点.
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,AD=PD=2,E,F,G分别为PC,PD,CB的中点.(1)求证:AP∥平面EFG;(2)求二...
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为正方形,AD=PD=2,E,F,G分别为PC,PD,CB的中点.(1)求证:AP∥平面EFG;(2)求二面角G-EF-D的大小;(3)求三棱锥C-PAB的体积.
展开
1个回答
展开全部
解:(1)证法1,连接AC,BD交于O点,连接GO,FO,EO,如图(1)所示:
∵E,F分别为PC,PD的中点,
∴EF∥CD且EF=
CD,同理GO∥CD且GO=
CD,
∴EF∥GO且EF=GO,
∴四边形EFOG是平行四边形,
∴EO?平面EFOG,又在△PAC中,
E,0分别为PC,AC的中点,
∴PA∥EO
∵EO?平面EFOG,PA?平面EFOG,∴PA∥平面EFOG,即PA∥平面EFG.(4分)
(2)解法1:取CD中点M,连接OM,EM,则OM∥AD,EM∥PD又
∵PD平面ABCD,AD?面ABCD,
∴PD⊥AD,又∵AD⊥CD
PD∩CD=D,
∴AD⊥平面PCD,
∴OM⊥平面PCD,
∴EM为OE在平面PCD上射影,
∵EM⊥EF,
∴OE⊥EF,
∴∠OEM为所求二面角的平面角,在Rt△OME中,
OM=EM,∴∠OEM=45°.
∴二面角G-EF-D的大小为45°.(5分)
∴二面角G-EF-D的平面角为45°.
(3)VC-PAB=VP=ABC=
×SABD×PD=
×
×2×2×2=
.(3分)
∵E,F分别为PC,PD的中点,
∴EF∥CD且EF=
1 |
2 |
1 |
2 |
∴EF∥GO且EF=GO,
∴四边形EFOG是平行四边形,
∴EO?平面EFOG,又在△PAC中,
E,0分别为PC,AC的中点,
∴PA∥EO
∵EO?平面EFOG,PA?平面EFOG,∴PA∥平面EFOG,即PA∥平面EFG.(4分)
(2)解法1:取CD中点M,连接OM,EM,则OM∥AD,EM∥PD又
∵PD平面ABCD,AD?面ABCD,
∴PD⊥AD,又∵AD⊥CD
PD∩CD=D,
∴AD⊥平面PCD,
∴OM⊥平面PCD,
∴EM为OE在平面PCD上射影,
∵EM⊥EF,
∴OE⊥EF,
∴∠OEM为所求二面角的平面角,在Rt△OME中,
OM=EM,∴∠OEM=45°.
∴二面角G-EF-D的大小为45°.(5分)
∴二面角G-EF-D的平面角为45°.
(3)VC-PAB=VP=ABC=
1 |
3 |
1 |
3 |
1 |
2 |
4 |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询