如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下
如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=2AC;②CM2+TN2=NC...
如图,在等腰Rt△ABC中,∠ACB=90°,CA=CB,点M、N是AB上任意两点,且∠MCN=45°,点T为AB的中点.以下结论:①AB=2AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正确结论的序号是( )A.①②③④B.只有①②③C.只有①③④D.只有②④
展开
1个回答
展开全部
解答:解:①∵△ABC是等腰三角形,∴AB=
AC,故①正确;
②连接CT;
由勾股定理得:CM2-MT2=CT2,NC2-NT2=CT2,
联立两式可得:CM2-MT2=NC2-NT2,即CM2+TN2=NC2+MT2;
故②正确;
③如图,过C作∠NCD=∠BCN,且CD=CB=AC,连接DM、DN;
∵∠DCN=∠BCN,CD=BC,CN=CN,
∴△DCN≌△BCN,得BN=DN,∠NDC=∠B=45°;
∵∠MCN=45°,∠ACB=90°,
∴∠ACM=∠DCM=45°-∠BCN=45°-∠DCN,
又∵AC=DC,CM=CM,
∴△ACM≌△DCM,得DM=AM,∠MDC=∠A=45°;
∴∠MDN=45°+∠45°=90°,
在Rt△MDN中,由勾股定理得:DM2+DN2=MN2,即AM2+BN2=MN2,
故③正确;
④S△ACM=
AM?CT,S△BNC=
BN?CT,S△MNC=
MN?CT,
∵AM+BN≠MN,∴S△ACM+S△BCN≠S△MNC,
故④错误;
因此正确的结论是①②③,故选B.
2 |
②连接CT;
由勾股定理得:CM2-MT2=CT2,NC2-NT2=CT2,
联立两式可得:CM2-MT2=NC2-NT2,即CM2+TN2=NC2+MT2;
故②正确;
③如图,过C作∠NCD=∠BCN,且CD=CB=AC,连接DM、DN;
∵∠DCN=∠BCN,CD=BC,CN=CN,
∴△DCN≌△BCN,得BN=DN,∠NDC=∠B=45°;
∵∠MCN=45°,∠ACB=90°,
∴∠ACM=∠DCM=45°-∠BCN=45°-∠DCN,
又∵AC=DC,CM=CM,
∴△ACM≌△DCM,得DM=AM,∠MDC=∠A=45°;
∴∠MDN=45°+∠45°=90°,
在Rt△MDN中,由勾股定理得:DM2+DN2=MN2,即AM2+BN2=MN2,
故③正确;
④S△ACM=
1 |
2 |
1 |
2 |
1 |
2 |
∵AM+BN≠MN,∴S△ACM+S△BCN≠S△MNC,
故④错误;
因此正确的结论是①②③,故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询