如图所示,在等腰Rt△ABC中,∠ABC=90°,D为AC边上中点
4个回答
展开全部
连接BD
∵△ABC是等腰直角三角形,D是AC的中点
∴∠C=∠ABD=45,BD=DC
∵∠EDB﹢∠BDF=∠BDF﹢∠FDC=90
∴∠EDB=∠FDC
∴△EDB≌△DFC
∴FC=EB=3,AE=BF=4
∴EF=5
∵△ABC是等腰直角三角形,D是AC的中点
∴∠C=∠ABD=45,BD=DC
∵∠EDB﹢∠BDF=∠BDF﹢∠FDC=90
∴∠EDB=∠FDC
∴△EDB≌△DFC
∴FC=EB=3,AE=BF=4
∴EF=5
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:连接BD,
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
∵
∠EBD=∠CBD=CD∠EDB=∠FDC
,
∴△EDB≌△FDC(ASA),
∴BE=FC=3,
∴AB=7,则BC=7,
∴BF=4,
在Rt△EBF中,
EF2=BE2+BF2=32+42,
∴EF=5.
答:EF的长为5.
∵等腰直角三角形ABC中,D为AC边上中点,
∴BD⊥AC(三线合一),BD=CD=AD,∠ABD=45°,
∴∠C=45°,
∴∠ABD=∠C,
又∵DE丄DF,
∴∠FDC+∠BDF=∠EDB+∠BDF,
∴∠FDC=∠EDB,
在△EDB与△FDC中,
∵
∠EBD=∠CBD=CD∠EDB=∠FDC
,
∴△EDB≌△FDC(ASA),
∴BE=FC=3,
∴AB=7,则BC=7,
∴BF=4,
在Rt△EBF中,
EF2=BE2+BF2=32+42,
∴EF=5.
答:EF的长为5.
追问
有简单一点的吗,位置写不下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BD=CD=AD,∠ABD=45°,∠C=45°,∠ABD=∠C,DE丄DF,∠FDC+∠BDF=∠EDB+∠BDF,
∠FDC=∠EDB,∠EBD=∠CBD=CD∠EDB=∠FDC ,△EDB≌△FDC(ASA),BE=FC=3,
AB=7,则BC=7,BF=4,EF2=BE2+BF2=32+42,EF=5.答:EF的长为5.
∠FDC=∠EDB,∠EBD=∠CBD=CD∠EDB=∠FDC ,△EDB≌△FDC(ASA),BE=FC=3,
AB=7,则BC=7,BF=4,EF2=BE2+BF2=32+42,EF=5.答:EF的长为5.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询