设x1<x2,A(x1,y1),B(x2,y2)是曲线f(x)=mlnx+ax2+bx+c(ma<0)上两点,直线AB的斜率为k.(Ⅰ
设x1<x2,A(x1,y1),B(x2,y2)是曲线f(x)=mlnx+ax2+bx+c(ma<0)上两点,直线AB的斜率为k.(Ⅰ)试比较k与f′(x1+x22)的大...
设x1<x2,A(x1,y1),B(x2,y2)是曲线f(x)=mlnx+ax2+bx+c(ma<0)上两点,直线AB的斜率为k.(Ⅰ)试比较k与f′(x1+x22)的大小;(Ⅱ)若存在实数x0∈(x1,x2),使得k=f′(x0),求证:x0<x1+x22.
展开
1个回答
展开全部
(Ⅰ)解:∵f(x)=mlnx+ax2+bx+c,(ma<0),x1<x2,
A(x1,y1),B(x2,y2),直线AB的斜率为k.
∴f′(x)=mx-1+2ax+b,
k-f′(
)=
-f′(
)
=m(
?
)
=
[ln
-
],
设g(t)=lnt-
,t>1,
则g′(t)=
>0,g(t)在(1,+∞)上单调增加,
g(t)>g(1)=0,∴
[ln
-
A(x1,y1),B(x2,y2),直线AB的斜率为k.
∴f′(x)=mx-1+2ax+b,
k-f′(
x1+x2 |
2 |
f(x2)?f(x1) |
x2?x1 |
x1+x2 |
2 |
=m(
lnx2 ?lnx1 |
x2?x1 |
2 |
x1+x2 |
=
m |
x2?x1 |
x2 |
x1 |
2(
| ||
|
设g(t)=lnt-
2(t?1) |
t+1 |
则g′(t)=
(t?1)2 |
t(t+1)2 |
g(t)>g(1)=0,∴
1 |
x2?x1 |
x2 |
x1 |
2(
| ||
|