一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为

一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖.(1)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.试... 一个口袋中装有大小相同的n个红球(n≥5且n∈N)和5个白球,一次摸奖从中摸两个球,两个球的颜色不同则为中奖.(1)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.试问当n等于多少时,P的值最大?(2)在(1)的条件下,将5个白球全部取出后,对剩下的n个红球全部作如下标记:记上i号的有i个(i=1,2,3,4),其余的红球记上0号,现从袋中任取一球.ξ表示所取球的标号,求ξ的分布列,期望和方差. 展开
 我来答
耗子0000368
2014-09-08 · 超过74用户采纳过TA的回答
知道答主
回答量:128
采纳率:0%
帮助的人:139万
展开全部
(1)一次摸奖从n+5个球中任取两个,有Cn+52种方法.它们是等可能的,其中两个球的颜色不同的方法有Cn1C51种,
一次摸奖中奖的概率P=
C
1
n
C
1
5
C
2
n+5
10n
(n+5)(n+4)
        …(2分)
设每次摸奖中奖的概率为p(0<p<1),三次摸奖中(每次摸奖后放回)恰有一次中奖的概率,
P=
C
1
3
×p×(1?p) 2
=3p3-6p2+3p
∴P′=9p2-12p+3=3(p-1)(3p-1),
由此知P在(0,
1
3
)
上为增函数,P在(
1
3
,1)
上为减函数,…(4分)
∴当p=
1
3
时P取得最大值,即p=
10n
(n+5)(n+4)
1
3

解得n=20或n=1(舍去),则当n=20时,三次摸奖(每次摸奖后放回)恰有一次中奖的概率最大.…(6分)
(2)由(1)可知:记上0号的有10个红球,从中任取一球,有20种取法,它们是等可能的故ξ的分布列是
ξ 0 1 2 3 4
P
1
2
1
20
2
20
3
20
4
20
…(8分)
Eξ=0×
1
2
+1×
1
20
+2×
2
20
+3×
3
20
+4×
4
20
=
3
2
                                      …(10分)
Dξ=(0-
3
2
2×
1
2
+(1-
3
2
2×
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式