已知a∈R,函数f(x)=a/x+lnx-1,g(x)=(lnx-1)e^x+x(其中e为自然对数的底数)

(1)求函数f(x)在区间(0,e】上的最小值(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明... (1)求函数f(x)在区间(0,e】上的最小值
(2)是否存在实数x0∈(0,e],使曲线y=g(x)在点x=x0处的切线与y轴垂直?若存在,求出x0的值;若不存在,请说明理由
展开
 我来答
幻想ZJL
2013-06-06 · TA获得超过364个赞
知道答主
回答量:110
采纳率:0%
帮助的人:49.7万
展开全部
解:(1)∵f(x)=ax+lnx-1,(x>0),
∴f′(x)=-ax2+1x=x-ax2
①若a≤0,则,f′(x)>0,f(x)在(0,e]上单调递增
②若0<a<e,当x∈(0,a)时,f′(x)<0,函数f(x)在区间(0,a)上单调递减,
当x∈(a,e]时,f′(x)>0,函数f(x)在区间(a,e]上单调递增
③若a≥e,则f′(x)≤0,函数f(x)在区间(0,e]上单调递减.
(2)∵g(x)=(lnx-1)ex+x
∴g′(x)=(1x+1nx-1)ex+1,由(1)易知,
当a=1时,f(x)在(0,+∞)上的最小值:f(x)min=f(1)=0
即x0∈(0,+∞)时,1x0+lnx0-1≥0.又ex0>0,
∴g′(x0)≥1>0,
曲线y=g(x)在点x=x0处的切线与y轴垂直等价于方程g′(x0)=0有实数解.
而g′(x0)>0,即方程g′(x0)=0无实数解,故不存在.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式