锐角△ABC中,BC=6, ,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长

锐角△ABC中,BC=6,,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(... 锐角△ABC中,BC=6, ,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0). (1)求△ABC中边BC上高AD;(2)当x为何值时,PQ恰好落在边BC上(如图1);(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少? 展开
 我来答
我素CK594
2014-09-11 · TA获得超过118个赞
知道答主
回答量:187
采纳率:0%
帮助的人:62.1万
展开全部
(1)4;(2)2.4(或 );(3)3,6.


试题分析:(1)本题利用矩形的性质和相似三角形的性质,根据MN∥BC,得△AMN∽△ABC,求出△ABC中边BC上高AD的长度.
(2)因为正方形的位置在变化,但是△AMN∽△ABC没有改变,利用相似三角形对应边上高的比等于相似比,得出等量关系,代入解析式,
(3)用含x的式子表示矩形MEFN边长,从而求出面积的表达式.
试题解析:(1)由BC=6,S △ABC =12,得AD=4;
(2)当PQ恰好落在边BC上时,
∵MN∥BC,∴△AMN∽△ABC.
,

解得,x=2.4(或
∴当x=2.4(或 )时正方形MPQN的边P恰好落在BC边上;
(3)设MP、NQ分别与BC相交于点E、F,
设HD=a,则AH=4-a,


解得,
∵矩形MEFN的面积=MN×HD,
∴y=x( )=  = (0<x≤6).
当x=3时,y最大为6.
考点: 1.二次函数综合题;2.矩形的性质;3.相似三角形的判定与性质.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式