如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正
如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1...
如图①所示,已知A、B为直线l上两点,点C为直线l上方一动点,连接AC、BC,分别以AC、BC为边向△ABC外作正方形CADF和正方形CBEG,过点D作DD1⊥l于点D1,过点E作EE1⊥l于点E1.(1)如图②,当点E恰好在直线l上时(此时E1与E重合),试说明DD1=AB;(2)在图①中,当D、E两点都在直线l的上方时,试探求三条线段DD1、EE1、AB之间的数量关系,并说明理由.
展开
2个回答
展开全部
∵四边形ADFC和四边形BCGE是正方形,
∴AD=AC,∠DAC=∠CBE=90°,
∴∠ABC=90°,∠D1AD+∠BAC=90°,
∴∠BAC+∠ACB=90°,
∴∠D1AD=∠BCA.
∵DD1⊥l,
∴∠DD1A=90°,
∴∠DD1A=∠ABC.
在△ADD1和△CAB中
,
∴△ADD1≌△CAB(AAS),
∴DD1=AB;
(2)DD1+EE1=AB
作CM⊥l于点M,
∴∠CMA=∠CMB=90.
∴∠MAC+∠MCA=90°,∠MBC+∠MCB=90°.
∵四边形ADFC和四边形BCGE是正方形,
∴AD=AC,BC=BE,∠DAC=∠CBE=90°,
∴∠D1AD+∠MAC=90°,∠E1BE+∠MBC=90°.
∴∠D1AD=∠MCA,∠E1BE=∠MCB.
∵DD1⊥l,EE1⊥l,
∴∠DD1A=∠EE1B=90°,
∴∠DD1A=∠CMA,∠EE1B=∠CMB.
在△AD1D和△CMA中
,
∴△AD1D≌△CMA(AAS),
∴D1D=AM.
在△BE1E和△CMB中
,
∴△BE1E≌△CMB(AAS),
∴E1E=BM.
∵AB=AM+BM,
∴AB=DD1+EE1.
∴AD=AC,∠DAC=∠CBE=90°,
∴∠ABC=90°,∠D1AD+∠BAC=90°,
∴∠BAC+∠ACB=90°,
∴∠D1AD=∠BCA.
∵DD1⊥l,
∴∠DD1A=90°,
∴∠DD1A=∠ABC.
在△ADD1和△CAB中
|
∴△ADD1≌△CAB(AAS),
∴DD1=AB;
(2)DD1+EE1=AB
作CM⊥l于点M,
∴∠CMA=∠CMB=90.
∴∠MAC+∠MCA=90°,∠MBC+∠MCB=90°.
∵四边形ADFC和四边形BCGE是正方形,
∴AD=AC,BC=BE,∠DAC=∠CBE=90°,
∴∠D1AD+∠MAC=90°,∠E1BE+∠MBC=90°.
∴∠D1AD=∠MCA,∠E1BE=∠MCB.
∵DD1⊥l,EE1⊥l,
∴∠DD1A=∠EE1B=90°,
∴∠DD1A=∠CMA,∠EE1B=∠CMB.
在△AD1D和△CMA中
|
∴△AD1D≌△CMA(AAS),
∴D1D=AM.
在△BE1E和△CMB中
|
∴△BE1E≌△CMB(AAS),
∴E1E=BM.
∵AB=AM+BM,
∴AB=DD1+EE1.
展开全部
(1)证明:∵四边形CADF、CBEG是正方形,
∴AD=CA,∠DAC=∠ABC=90°,
∴∠DAD1+∠CAB=90°,
∵DD1⊥AB,
∴∠DD1A=∠ABC=90°,
∴∠DAD1+∠ADD1=90°,
∴∠ADD1=∠CAB,
在△ADD1和△CAB中,∠DD1A=∠ABC ∠ADD1=∠CAB AD=CA,
∴△ADD1≌△CAB(AAS),
∴DD1=AB;
(2)解:AB=DD1+EE1.
证明:过点C作CH⊥AB于H,
∵DD1⊥AB,
∴∠DD1A=∠CHA=90°,
∴∠DAD1+∠ADD1=90°,
∵四边形CADF是正方形,
∴AD=CA,∠DAC=90°,
∴∠DAD1+∠CAH=90°,
∴∠ADD1=∠CAH,
在△ADD1和△CAH中,∠DD1A="∠CHA" ∠ADD1=∠CAH AD=CA,
∴△ADD1≌△CAH(AAS),
∴DD1=AH;
同理:EE1=BH,
∴AB=AH+BH=DD1+EE1;
∴AD=CA,∠DAC=∠ABC=90°,
∴∠DAD1+∠CAB=90°,
∵DD1⊥AB,
∴∠DD1A=∠ABC=90°,
∴∠DAD1+∠ADD1=90°,
∴∠ADD1=∠CAB,
在△ADD1和△CAB中,∠DD1A=∠ABC ∠ADD1=∠CAB AD=CA,
∴△ADD1≌△CAB(AAS),
∴DD1=AB;
(2)解:AB=DD1+EE1.
证明:过点C作CH⊥AB于H,
∵DD1⊥AB,
∴∠DD1A=∠CHA=90°,
∴∠DAD1+∠ADD1=90°,
∵四边形CADF是正方形,
∴AD=CA,∠DAC=90°,
∴∠DAD1+∠CAH=90°,
∴∠ADD1=∠CAH,
在△ADD1和△CAH中,∠DD1A="∠CHA" ∠ADD1=∠CAH AD=CA,
∴△ADD1≌△CAH(AAS),
∴DD1=AH;
同理:EE1=BH,
∴AB=AH+BH=DD1+EE1;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询