古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16的称为“正方形数"
3个回答
展开全部
正方形数:n^2 1、4、9、16、25、36、
三角形数:n*(n+1)/2 1、3、6、10、15、21
n^2=n*(n+1)/2+(n+1)*(n+1+1)/2
16*16=15*(15+1)/2+16(16+1)/2=120+136
选36=15+21
三角形数:n*(n+1)/2 1、3、6、10、15、21
n^2=n*(n+1)/2+(n+1)*(n+1+1)/2
16*16=15*(15+1)/2+16(16+1)/2=120+136
选36=15+21
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
n^2=n*(n+1)/2+(n+1)*(n+1+1)/2
16*16=15*(15+1)/2+16(16+1)/2=120+136
选36=15+21
16*16=15*(15+1)/2+16(16+1)/2=120+136
选36=15+21
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询