设a>1,则当y=ax与y=logax两个函数图象有且只有一个公共点时,lnlna=______
设a>1,则当y=ax与y=logax两个函数图象有且只有一个公共点时,lnlna=______....
设a>1,则当y=ax与y=logax两个函数图象有且只有一个公共点时,lnlna=______.
展开
展开全部
因为y=ax与y=logax两个函数互为反函数,它们的图象关于y=x对称,所以要使两个函数图象有且只有一个公共点时,则它们y=x是两个函数的共同的切线.
设两个函数相切时的切点坐标为M(x0,y0),由于曲线y=ax在M处的切线斜率为1,
所以ax0=x0,且函数y=ax的导数为y′=f′(x0)=ax0lna=1,
即
,所以
,
则a
=
,两边取对数得ln?a
=ln?
=1,
所以解得e=
,所以lna=
,即a=e
,此时x0=e.
所以lnlna═ln(
)=-1.
故答案为:-1.
设两个函数相切时的切点坐标为M(x0,y0),由于曲线y=ax在M处的切线斜率为1,
所以ax0=x0,且函数y=ax的导数为y′=f′(x0)=ax0lna=1,
即
|
|
则a
1 |
lna |
1 |
lna |
1 |
ln?a |
1 |
ln?a |
所以解得e=
1 |
lna |
1 |
e |
1 |
e |
所以lnlna═ln(
1 |
e |
故答案为:-1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询