已知下面四个图中AB∥CD,试探讨四个图形中∠APC与∠PAB﹑∠PCD的数量关系.(1)图(1)中∠APC与∠PAB
已知下面四个图中AB∥CD,试探讨四个图形中∠APC与∠PAB﹑∠PCD的数量关系.(1)图(1)中∠APC与∠PAB﹑∠PCD的关系是______.(2)图(2)中∠A...
已知下面四个图中AB∥CD,试探讨四个图形中∠APC与∠PAB﹑∠PCD的数量关系.(1)图(1)中∠APC与∠PAB﹑∠PCD的关系是______.(2)图(2)中∠APC与∠PAB﹑∠PCD的关系是______.(3)请你在图(3)和图(4)中任选一个,说出∠APC与∠PAB﹑∠PCD的关系,并加以证明.(提示:可过P点作PE∥AB)
展开
1个回答
展开全部
(1)如图,过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠APE,∠PCD=∠CPE,
∵∠APC=∠APE+∠CPE,
∴∠APC=∠PAB+∠PCD;
(2)过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,
∵∠APC=∠APE+∠CPE,
∴∠APC+∠PAB+∠PCD=360°;
故答案为:(1)∠APC=∠PAB+∠PCD;
(2)∠APC+∠PAB+∠PCD=360°;
(3)图(3)过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,
∵∠APC=∠CPE-∠APE,
∴∠APC=∠PAB-∠PCD;
同理图(4)∠APC=∠PCD-∠PAB.
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB=∠APE,∠PCD=∠CPE,
∵∠APC=∠APE+∠CPE,
∴∠APC=∠PAB+∠PCD;
(2)过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,
∵∠APC=∠APE+∠CPE,
∴∠APC+∠PAB+∠PCD=360°;
故答案为:(1)∠APC=∠PAB+∠PCD;
(2)∠APC+∠PAB+∠PCD=360°;
(3)图(3)过点P作PE∥AB,
∵AB∥CD,
∴AB∥PE∥CD,
∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,
∵∠APC=∠CPE-∠APE,
∴∠APC=∠PAB-∠PCD;
同理图(4)∠APC=∠PCD-∠PAB.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询