如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例
如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是...
如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.(1)求该二次函数的解析式,并求函数顶点M的坐标;(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;(3)0<k<2时,求四边形PCMB的面积s的最小值.【参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为(x1+x22,y1+y22)】
展开
1个回答
展开全部
(1)由y=ax2+bx+c,则得
,
解得
,
故函数解析式是:y=-x2+2x+3.
由y=-x2+2x+3=-(x-1)2+4知,
点M(1,4).
(2)由点E(2,3)在正比例函数y=kx的图象上得,3=2k,得k=
,
故y=
x,
由
,
解得D点坐标为(?
,?
),
由图象可知,当二次函数的函数值大于正比例函数时,自变量x的取值范围是-
<x<2.
(3)
,
解得,点D、E坐标为D(
,
?k)、
E(
,
?k),
则点P坐标为P(
,
?k)由0<k<2,知点P在第一象限.
由点B(3,0),C(0,3),M(1,4),
得S四边形COBM=
+
×2×4=
,
则S四边形PCMB=
?S△OPC?S△OPB=
?
×3×
?
×3×
?k,
整理,配方得S四边形PCMB=
(k?
)2+
.
故当k=
时,四边形PCMB的面积值最小,最小值是
.
|
解得
|
故函数解析式是:y=-x2+2x+3.
由y=-x2+2x+3=-(x-1)2+4知,
点M(1,4).
(2)由点E(2,3)在正比例函数y=kx的图象上得,3=2k,得k=
3 |
2 |
故y=
3 |
2 |
由
|
解得D点坐标为(?
3 |
2 |
9 |
4 |
由图象可知,当二次函数的函数值大于正比例函数时,自变量x的取值范围是-
3 |
2 |
(3)
|
解得,点D、E坐标为D(
2?k?
| ||
2 |
2?k?
| ||
2 |
E(
2?k+
| ||
2 |
2?k+
| ||
2 |
则点P坐标为P(
2?k |
2 |
2?k |
2 |
由点B(3,0),C(0,3),M(1,4),
得S四边形COBM=
1×(3+4) |
2 |
1 |
2 |
15 |
2 |
则S四边形PCMB=
15 |
2 |
15 |
2 |
1 |
2 |
2?k |
2 |
1 |
2 |
2?k |
2 |
整理,配方得S四边形PCMB=
3 |
4 |
1 |
2 |
93 |
16 |
故当k=
1 |
2 |
93 |
16 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询