求大佬解一下这道可降阶的微分方程
4个回答
展开全部
令 p = y' = dy/dx, 则 y'' = dp/dx = (dp/dy)(dy/dx) = pdp/dy
2(y')^2 = y''(y-1) 化为 2p^2 = p(y-1)dp/dy
p ≠ 0 时化为 2p = (y-1)dp/dy, dp/p = 2dy/(y-1),
lnp = 2ln(y-1) + lnC1, p = dy/dx = C1(y-1)^2
dy/(y-1)^2 = C1dx, -1/(y-1) = C1x + C2, (C1x+C2)(y-1) + 1 = 0;
p = 0 时, y = C。
2(y')^2 = y''(y-1) 化为 2p^2 = p(y-1)dp/dy
p ≠ 0 时化为 2p = (y-1)dp/dy, dp/p = 2dy/(y-1),
lnp = 2ln(y-1) + lnC1, p = dy/dx = C1(y-1)^2
dy/(y-1)^2 = C1dx, -1/(y-1) = C1x + C2, (C1x+C2)(y-1) + 1 = 0;
p = 0 时, y = C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询