高中数学竞赛题,懂得进。。
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)...
证明,sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
展开
3个回答
展开全部
数学归纳法
或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
或者[sina+sin(a+b)+sin(a+2b)+..+sin(a+nb)]sin(b/2)
=sinasin(b/2)+sin(a+b)sin(b/2)+sin(a+2b)sinb/2)+...+sin(a+nb)sin(b/2)
=(-1/2)[cos(a+b/2)-cos(a-b/2)+cos(a+3b/2)-cos(a+b/2)+...+cos(a+(2n+1)b/2)-cos(a+(2n-1)b/2)
=(-1/2)[cos(a+(2n+1)b/2)-cos(a-b/2)]
=sin(a+nb/2)sin(n+1)b/2
即sina+sin(a+b)+sin(a+2b)+...sin(a+nb)=sin(a+ab/2)sin[(n+1)b/2]/sin(b/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询