利用平面向量证明余弦定理的全步骤,
展开全部
设三角形ABC的三边长分别是a,b,c.以A为原点,AB方向为x轴正向.
则A,B,C的坐标分别是(0,0),(c,0),(bcosA,bsinA)
因此向量AB=(c,0),AC=(bcosA,bsinA),BC=(bcosA-c,bsinA)
|AB|^2+|AC|^2-|BC|^2=c^2+b^2-(bcosA-c)^2-(bsinA)^2=2bccosA
则A,B,C的坐标分别是(0,0),(c,0),(bcosA,bsinA)
因此向量AB=(c,0),AC=(bcosA,bsinA),BC=(bcosA-c,bsinA)
|AB|^2+|AC|^2-|BC|^2=c^2+b^2-(bcosA-c)^2-(bsinA)^2=2bccosA
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询