x的n次方求和公式
展开全部
当x=0时,S(0)=0,当x≠0时,S(x)=∑n^2*x^n=x∑[(n+1)n-n]*x^(n-1),S(x)/x=∑(n+1)n*x^(n-1)-∑n*x^(n-1)=[∑x^(n+1)]''-[∑x^n]'=[x^2/(1-x)]''-[x/(1-x)]'=2/(1-x)^3-1/(1-x^2)=(1+x)/(1-x)^3,得S(x)=x(1+x)/(1-x)^3,已包含了x=0的情况。收敛域-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询