求这个微分方程的通解,请写出过程,谢谢

 我来答
茹翊神谕者

2021-07-16 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1600万
展开全部

简单计算一下即可,答案如图所示

富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
heanmeng
2015-06-11 · TA获得超过6749个赞
知道大有可为答主
回答量:3651
采纳率:94%
帮助的人:1496万
展开全部
解:∵cosydx+(1+e^(-x))sinydy=0
==>dx/(1+e^(-x))+sinydy/cosy=0
==>e^xdx/(1+e^x)+sinydy/cosy=0
==>d(1+e^x)/(1+e^x)-d(cosy)/cosy=0
==>ln(1+e^x)-ln│cosy│=ln│C│ (C是非零常数)
==>(1+e^x)/cosy=C
==>1+e^x=Ccosy
∴此方程的通解是1+e^x=Ccosy。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
霓屠Cn
2019-04-10 · 知道合伙人教育行家
霓屠Cn
知道合伙人教育行家
采纳数:1211 获赞数:5590

向TA提问 私信TA
展开全部
解:方程两边同时除以cosy[1+e^(-x)],得:
dx/[1+e^(-x)]+sinydy/cosy=dx/[1+1/e^x]-dcosy/cosy=d(1+e^x)/(1+e^x)-ln| cosy|+C1=0
即: ln|cosy|=ln(1+e^x)+ln|C|;
cosy=C(1+e^x)(cosy≠0)。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式