求下列函数的极值f(x,y)=3x^2y+y^3-3x^2-3y^2+2 拐点怎么求啊..
1个回答
展开全部
f(x,y)=3x^2y+y^3-3x^2-3y^2+2,
下面求驻点坐标:
f'x=6xy-6x=0,①
f'y=3x^+3y^-6y=0,②
由①,x=0,或y=1.
把x=0代入②,y^-2y=0,y=0或2;
把y=1代入②,x^=1,x=土1.
f''xx=6y-6,f''xy=6x,f''yy=6y-6.
(1)x=y=0,A=f''xx(0,0)=-60,
∴f(x,y)在(0,0)处取极大值2;
剩下部分留给您练习.
下面求驻点坐标:
f'x=6xy-6x=0,①
f'y=3x^+3y^-6y=0,②
由①,x=0,或y=1.
把x=0代入②,y^-2y=0,y=0或2;
把y=1代入②,x^=1,x=土1.
f''xx=6y-6,f''xy=6x,f''yy=6y-6.
(1)x=y=0,A=f''xx(0,0)=-60,
∴f(x,y)在(0,0)处取极大值2;
剩下部分留给您练习.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |