数列a1=1,a2=2.,(an+1+an)/an=(an+2-an+1)/an+1,求an
展开全部
(an+1+an)/an=(an+2-an+1)/an+1
a(n+1)/an +1=a(n+2)/a(n+1)-1
a(n+2)/a(n+1)-a(n+1)/an=2
{ a(n+1)/an}为等差数列,公差为2
a(n+1)/an=2+(n-1)2=2n
当n≥2时,
a2/a1=2
a3/a2=4
a4/a3=6
a5/a4=8
...............
an/a(n-1)=2(n-1)
an/a1=2×4×6×.....×2(n-1)
=2^(n-1)×(n-1)!
an=(n-1)!2^(n-1)
当n=1时上式成立
an=(n-1)!2^(n-1)(n∈N*)
a(n+1)/an +1=a(n+2)/a(n+1)-1
a(n+2)/a(n+1)-a(n+1)/an=2
{ a(n+1)/an}为等差数列,公差为2
a(n+1)/an=2+(n-1)2=2n
当n≥2时,
a2/a1=2
a3/a2=4
a4/a3=6
a5/a4=8
...............
an/a(n-1)=2(n-1)
an/a1=2×4×6×.....×2(n-1)
=2^(n-1)×(n-1)!
an=(n-1)!2^(n-1)
当n=1时上式成立
an=(n-1)!2^(n-1)(n∈N*)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询