设A为n阶方阵,若A2=0,则A=0对还是错 设A,B同为n阶矩阵,若AB=E,则必有BA=E

 我来答
科创17
2022-06-12 · TA获得超过5917个赞
知道小有建树答主
回答量:2846
采纳率:100%
帮助的人:177万
展开全部
1.
你的A2=0,是不是A的平方的意思,即A^2,假如是这样:
分析:
A^2=A*A=0
两边取行列式:
|A^2|=|A*A|=|A|*|A|=0
得:|A|=0
一个矩阵的行列式=0,不一定有这个矩阵是0矩阵,如:
A=
1 1
1 1
有|A|=0,但A矩阵不是0矩阵.
所以原命题是错的.
2.
分析:
若AB=E,
得:|AB|=|A||B|=1
得出,|A|不等于0,且|B|不等于0,
所以A,B这两个矩阵都可逆的.
因为A乘A的逆=E
所以A的逆就是B了,
同样,B的逆就是A了.
所以BA=A的逆*A=E
所以原命题是对的.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式