如何判定三角形的过程
1个回答
展开全部
内角和为180°
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)“斜边、直角边”简称“HL”
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.
由不在同一直线上的三条线段首尾顺次连结所组成的封闭图形叫做三角形.
平面上三条直线或球面上三条弧线所围成的图形.
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形.
一个封闭图形的内角和为180度叫做三角形.
证明:
已知:△ABC,证明:∠ABC+∠BAC+∠BCA=180
证明:做BC的延长线至D点,过C点作AB的平行线至E点
∵AB‖CE
∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(内错角相等)
∵∠BCD=180
∴∠ACB+∠ACE+∠ECD=∠BCD=180
∴∠ABC+∠BAC+∠BCA=180
证毕.
(1)“边角边”简称“SAS”
(2)“角边角”简称“ASA”
(3)“边边边”简称“SSS”
(4)“角角边”简称“AAS”
(5)“斜边、直角边”简称“HL”
注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.
由不在同一直线上的三条线段首尾顺次连结所组成的封闭图形叫做三角形.
平面上三条直线或球面上三条弧线所围成的图形.
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形.
一个封闭图形的内角和为180度叫做三角形.
证明:
已知:△ABC,证明:∠ABC+∠BAC+∠BCA=180
证明:做BC的延长线至D点,过C点作AB的平行线至E点
∵AB‖CE
∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(内错角相等)
∵∠BCD=180
∴∠ACB+∠ACE+∠ECD=∠BCD=180
∴∠ABC+∠BAC+∠BCA=180
证毕.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询