log2(4^x+4)=x+log2(2^x+1-3)?
1个回答
展开全部
log2(4^x+4)=log2(2^x)+log2[2^(x+1)-3]
令2^x=a
4^x=a²
2^(x+1)=2a
log2(a²+4)=log2(a)+log2(2a-3)
log2(a²+4)=log2(2a²-3a)
a²+4=2a²-3a
a²-3a-4=0
a=4,a=-1
a=2^x>0
所以2^x=4
x=2,2,log2(4^x+4)=x+log2(2^x+1-3)
log2(4^x+4)=x+log2[2^(x+1)-3]
令2^x=a
4^x=a²
2^(x+1)=2a
log2(a²+4)=log2(a)+log2(2a-3)
log2(a²+4)=log2(2a²-3a)
a²+4=2a²-3a
a²-3a-4=0
a=4,a=-1
a=2^x>0
所以2^x=4
x=2,2,log2(4^x+4)=x+log2(2^x+1-3)
log2(4^x+4)=x+log2[2^(x+1)-3]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询