某幼儿园大中小三个班共100名小朋友,共收用纸费578元,大班每人收10元,中班每人收6元,小班每

某幼儿园大中小三个班共100名小朋友,共收用纸费578元,大班每人收10元,中班每人收6元,小班每人收4元,中班收的用纸费比小班多48元,那么大班共有多少名小朋友?... 某幼儿园大中小三个班共100名小朋友,共收用纸费578元,大班每人收10元,中班每人收6元,小班每人收4元,中班收的用纸费比小班多48元,那么大班共有多少名小朋友? 展开
 我来答
匿名用户
2021-10-04
展开全部
解法一:
(1)578-48=530(元),100-48/6=92(名)
此时,中班的小班的费用相同。假设中班和小班各收12元,就可以收中班2人的费用,收小班3人费用。把中班和小班看成同一个班。
(2)中班和小班的平均费用:(2*6+3*4)/(2+3)=4.8(元)
(3)大班人数:(530-92*4.8)/(10-4.8)=17(名)
(4)中班:(530-17*10)/2=180(元),(180+48)/6=38(名)
(5)小班:180/4=45(名)

解法二:设大班有小朋友x名,中班y名,小班z名
x+y+z=100
10x+6y+4z=578
6y-4z=48
解得 x=17, y=38, z=45
Woo丿young
2015-10-21
知道答主
回答量:21
采纳率:0%
帮助的人:11.8万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
庆帅老师
高能答主

2021-03-20 · 世界很大,慢慢探索
知道大有可为答主
回答量:6.9万
采纳率:97%
帮助的人:2052万
展开全部
大班有X名小朋友,中班有Y名小朋友,小班有Z名小朋友。
大中小三个班共100名小朋友,共收用纸费578元,大班每人收10元,中班每人收6元,小班每人收4元,中班收的用纸费比小班多48元,那么大班共有多少名小朋友?
列方程式:
X+Y+Z=100
10X+6Y+4Z=578
6Y-4Z=48。
这是三元一次方程组,
解得X=32,
大班一共有32名学生。

数学解题方法和技巧。
中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。

它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式