数学归纳法证明: 1/1*2+1/2*3+1/3*4+⋯+1/n(n+1)=n/n+1

数学归纳法证明:1/1*2+1/2*3+1/3*4+⋯+1/n(n+1)=n/n+1... 数学归纳法证明:
1/1*2+1/2*3+1/3*4+⋯+1/n(n+1)=n/n+1
展开
 我来答
hrcren
2015-09-05 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4449
采纳率:80%
帮助的人:2394万
展开全部
∑1/k(k+1)=n/(n+1) (k=1->n)
k=1时,1/2=1/2显然成立
假设k=n-1时,结论成立
即有
1/1*2+1/2*3+1/3*4+...+1/(n-1)n=(n-1)/n
则k=n时,有
1/1*2+1/2*3+1/3*4+...+1/(n-1)n+1/n(n+1)
=(n-1)/n+1/n(n+1)
=(n²-1+1)/n(n+1)
=n²/n(n+1)
=n/(n+1)
∴k=n时,结论成立
综上所述,对所有的n,结论成立
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式