证明数列极限的格式

 我来答
小样Bella
2022-10-10 · TA获得超过464个赞
知道小有建树答主
回答量:2356
采纳率:100%
帮助的人:65.9万
展开全部

证明数列极限的两种格式如下:

1、数列极限的证明方法一

X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限

求极限我会

|Xn+1-A|<|Xn-A|/A

以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;

|Xn-1-A|<|Xn-2-A|/A;

……

|X2-A|<|X1-A|/A;

向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)

只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:

①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1);

设x(k+1)>x(k),则

x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)

=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。

2、数列极限的证明方法二

证明{x(n)}有上界。

x(1)=1<4,

设x(k)<4,则

x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0

当0

构造函数f(x)=x*a^x(0

令t=1/a,则:t>1、a=1/t

且,f(x)=x*(1/t)^x=x/t^x(t>1)

则:

lim(x→+∞)f(x)=lim(x→+∞)x/t^x

=lim(x→+∞)[x'/(t^x)'](分子分母分别求导)

=lim(x→+∞)1/(t^x*lnt)

=1/(+∞)

=0

所以,对于数列n*a^n,其极限为0

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式