为什么内点、聚点、孤立点的区别?

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

主要是数学上的区别:

1:数学定义的区别

内点:设E是n维空间Rn中的一个点集,P0是Rn中的一个定点,E包含于Rn,P0∈Rn,邻域U(P)∈E,则称P为E的内点。或者也可以定义为设M∈E,如果存在M的一个δ邻域U(M,δ),使U(M,δ)∈E,则M是E的内点。

聚点:聚点是拓扑空间的基本概念之一。设A为拓扑空间X的子集,a∈X,若a的任意邻域都含有异于a的A中的点,则称a是A的聚点。集合A的所有聚点的集合称为A的导集,聚点和导集等概念是康托尔(Cantor,G.(F.P.))研究欧几里得空间的子集时首先提出的。

孤立点:指在数据集合中与大多数数据的特征或不一致的数据。

2:点之间的区别和关系:

设有点集E

内点:属于E,且存在一个邻域全含于E;

聚点:全部邻域都有E的无穷多点;

孤立点:属于E;不是聚点,即存在一个邻域∩E={该点};

3:相互关系的区别:

内点一定是聚点,聚点可能是内点可能是边界点;

孤立点一定是边界点,边界点可能是孤立点可能是聚点。

扩展资料:

点的含义:

点是无法被定义的。试图去定义点就会陷入重复定义、逆逻辑定义的深渊。点作为原始概念的同时也具有原始概念的性质。

在科学系统中总是要对概念下定义,而且一定会用一些已知的概念来定义新的概念,但概念的个数是有限的,又由第二条规则可知,下定义是不能恶性循环的,因此总有一些概念不能引用别的概念来定义,这样概念叫做这个科学体系中的原始概念。

但是,在一般的初等几何中,点和直线都无法再用已被定义过的概念进行定义,它们都是原始概念。在数学中,点、直线、平面、集合,空间、数、量等都是原始概念,但在其中有些是通过公理来直接描述的,虽然有些概念在中学课本中也有解释,但这种解释并不是定义。

参考资料:内点_百度百科

参考资料:孤立点_百度百科

参考资料:聚点_百度百科

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式