数列的上下极限定义

 我来答
豆包豆豆豆
2022-11-14 · 超过32用户采纳过TA的回答
知道答主
回答量:144
采纳率:100%
帮助的人:2.3万
展开全部

对于数列{an}如果它收敛与一个有穷的极限,那么它的任一子列都收敛于这个极限。如果它不收敛于一个有穷的极限,但是有界,按照BolzanoWeierstrass定理,从中可以找出一个收敛的子列,如果{an}无界,那么总可以找到一个子列趋于正无穷或者负无穷。

我们把数列{an}的某个收敛子列的极限称为{an}的一个极限点。对收敛数列而言,极限点只有一个,就是它的极限值。对发散数列而言,如果它有界,则它可以有若干个或无穷多个极限点;如果它无界,则除了有限的点外,它还可以以正负无穷为极限点。

数列(sequence of number),是以正整数集(或它的有限子集)为定义域的一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

著名的数列有斐波那契数列,卡特兰数,杨辉三角等。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式