已知函数f(x)=lg (x+√x²+1),试判断函数的单调性,并证明.
1个回答
展开全部
你好这个函数是奇函数。
证明首先求函数的定义域由
√(x^2+1)-x>0
即x属于R
原因
f(-x)=lg√[(-x)^2+1]-(-x)
=lg√((-x)^2+1)+x
=lg[√(x^2+1)+x]*1
=lg[√(x^2+1)+x]*[√(x^2+1)-x]/[√(x^2+1)-x]
=lg[(√x^2+1) -x ]/[√((x^2+1)-x]
=lg1/[√(x^2+1)-x]
=lg[√(x^2+1)-x]^(-1)
=-lg[√(x^2+1)-x]
=-f(x)
即f(-x)=-f(x)
故函数是奇函数。
证明首先求函数的定义域由
√(x^2+1)-x>0
即x属于R
原因
f(-x)=lg√[(-x)^2+1]-(-x)
=lg√((-x)^2+1)+x
=lg[√(x^2+1)+x]*1
=lg[√(x^2+1)+x]*[√(x^2+1)-x]/[√(x^2+1)-x]
=lg[(√x^2+1) -x ]/[√((x^2+1)-x]
=lg1/[√(x^2+1)-x]
=lg[√(x^2+1)-x]^(-1)
=-lg[√(x^2+1)-x]
=-f(x)
即f(-x)=-f(x)
故函数是奇函数。
更多追问追答
追问
你好~请问单调性呐
追答
啊
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询