1个回答
展开全部
let a,b 的夹角=x
|b-a|^2 = |b|^2+|a|^2 - 2|a||b|cosx
= 1+|a|^2-2|a|cosx
a.(b-a) =|a||b-a|cos120度= (-1/2)|a||b-a|= |a||b|cosx -|a|^2
=>(-1/2)|b-a|= cosx -|a|
1+|a|^2-2|a|cosx = -4(cosx -|a|)^2
1+|a|^2-2|a|cosx = -4(cosx)^2 +8|a|cosx-4|a|^2
5|a|^2-10|a|cosx+1+4(cosx)^2 =0
cosx = [-2+√(5|a|^2-4)] / 4 or [-2-√(5|a|^2-4)] / 4
|cosx|<=1
[-2+√(5|a|^2-4)] / 4 <= 1 and [-2-√(5|a|^2-4)] / 4 >= -1
=>√(5|a|^2-4) <=6 and √(5|a|^2-4) <= 2
=>√(5|a|^2-4) <=2
=> 5|a|^2-4 <= 4
=> |a|^2 <=8/5
=> |a| <=2√10/5
ie 0 < |a| <= 2√10/5
|b-a|^2 = |b|^2+|a|^2 - 2|a||b|cosx
= 1+|a|^2-2|a|cosx
a.(b-a) =|a||b-a|cos120度= (-1/2)|a||b-a|= |a||b|cosx -|a|^2
=>(-1/2)|b-a|= cosx -|a|
1+|a|^2-2|a|cosx = -4(cosx -|a|)^2
1+|a|^2-2|a|cosx = -4(cosx)^2 +8|a|cosx-4|a|^2
5|a|^2-10|a|cosx+1+4(cosx)^2 =0
cosx = [-2+√(5|a|^2-4)] / 4 or [-2-√(5|a|^2-4)] / 4
|cosx|<=1
[-2+√(5|a|^2-4)] / 4 <= 1 and [-2-√(5|a|^2-4)] / 4 >= -1
=>√(5|a|^2-4) <=6 and √(5|a|^2-4) <= 2
=>√(5|a|^2-4) <=2
=> 5|a|^2-4 <= 4
=> |a|^2 <=8/5
=> |a| <=2√10/5
ie 0 < |a| <= 2√10/5
追问
和答案不大一样呢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询