极限的运算法则有哪些?
1个回答
展开全部
极限的四则运算法则:
极限的四则运算法则是在学习了极限概念和无穷小量与无穷大量之后的又一重要内容,也是学习导数和微分的重要基础知识。
在进行极限的四则运算法则之前,需要对极限的概念、无穷小量和无穷大量的概念、无穷小量的运算性质、无穷小量和无穷大量的关系等基本内容都有初步学习和了解,而对于如何利用无穷小量的运算法则、无穷小量与无穷大量之间的关系求取函数的极限,以及利用观察法求取数列的极限和简单函数的极限,需要进行进一步的学习与掌握。
极限的四则运算公式表
公式
加减法 , ,则
乘法 , ,则
除法 , ,且y≠0,B≠0,则
极限的四则运算法则是两个函数的极限都存在,并且分母的极限还不等于0的情况下,当这两个条件都满足的,那么两个函数在和、差、积、商的极限和这两个函数的极限的和、差、积、商都相等;对于一个常数与一个函数的乘积的极限的情况,其结果等于这个常数与这个函数的极限乘积;并且一个函数的乘方的极限和这个函数的极限乘方也是相等的。在解决具体问题时,需要根据实际情况进行运算和解答,重视实际应用。
当极限的函数是一个整式,可以直接运用极限的四则运算法则来进行计算。例如,当x趋近于1时,分母的极限不是0,可以直接对法则进行运用和计算。
例: = =
三 极限的四则运算法则在进行函数极限求解时需要注意的事项
第一,对于分式来说,当其分母的极限不等于0时,才能直接运用四则运算法则进行求解。
第二,避免一些常见的错误的认识,例如对c/0=∞,(c为任意的常数),∞-∞=0,∞/∞=0等。
第三,对于无穷多个无穷小量来说,其和未必是无穷小量。
四 极限的四则运算法则的归类
1.x→x0这种情况
第一,当函数f(x)是一个整式,可以对极限的四则运算法则进行直接的运用和计算,或是直接对f(x0)进行求解。
第二,当函数f(x)是一个分式,其分母的极限等于0,而要注意分子的极限并不等于0,那么便可以对极限的四则运算法则进行直接的运用并计算,或者求出f(x0)。
第三,在函数f(x)是个分式的情况下,当分母的极限
为0时,那么分子的极限不等于0,可以先对lim =0
进行求解,再根据无穷小量和无穷大量这之间的关系来进行计算。
第四,当f(x)是个分式,如果其分母的极限还有分子极限都等于0,先让其分子和分母中的公因式进行约分,或者是让含有根号的分子或分母有理化,再进行约分,然后利用极限的四则运算法则来进行计算,从而得到正确的结果。
2.x→∞的情形
在x→∞的情形下,函数的极限值主要是由分子、分母的最高次幂项的次数之间的关系来进行决定的,需要对分子分母的最高次幂项进行分析。
3.其他的情形
在进行求解的过程中有时用到有关无穷小量的运算性质,对于代数和与乘积的极限而言,要注意其所强调的“有限个无穷小量”,但如果这个条件没有办法得到满足,就不能用这个性质来进行极限的求解。
第五,运用极限四则运算法则求极限时常见的错误
在进行数列极限的计算中,对于四则运算法则的运用,需要注意一些问题:对数列极限的加、减和乘的运算法则能够把有限个数列进行推广,在这种情况下,不能对有限个数列的情况进行适用。在这个法则里还指出,“若两个数列都有极限的存在”,这是对数列极限的四则运算法则运用的一个前提条件。在利用极限四则运算法则进行计算时,注重两点,一是法则对于每个参与运算的函数的极限都必须是存在的;二是商的极限的运算法则有个很重要的前提,分母的极限不能为0。当这两个条件中任何一个条件不能满足的时候,不能利用极限的四则运算法则进行计算。
总之,极限的四则运算法则作为极限内容中的重点与难点,需要引起重视,在实际运用时,尤其要注意法则的使用条件,从而避免错误的出现。
极限的四则运算法则是在学习了极限概念和无穷小量与无穷大量之后的又一重要内容,也是学习导数和微分的重要基础知识。
在进行极限的四则运算法则之前,需要对极限的概念、无穷小量和无穷大量的概念、无穷小量的运算性质、无穷小量和无穷大量的关系等基本内容都有初步学习和了解,而对于如何利用无穷小量的运算法则、无穷小量与无穷大量之间的关系求取函数的极限,以及利用观察法求取数列的极限和简单函数的极限,需要进行进一步的学习与掌握。
极限的四则运算公式表
公式
加减法 , ,则
乘法 , ,则
除法 , ,且y≠0,B≠0,则
极限的四则运算法则是两个函数的极限都存在,并且分母的极限还不等于0的情况下,当这两个条件都满足的,那么两个函数在和、差、积、商的极限和这两个函数的极限的和、差、积、商都相等;对于一个常数与一个函数的乘积的极限的情况,其结果等于这个常数与这个函数的极限乘积;并且一个函数的乘方的极限和这个函数的极限乘方也是相等的。在解决具体问题时,需要根据实际情况进行运算和解答,重视实际应用。
当极限的函数是一个整式,可以直接运用极限的四则运算法则来进行计算。例如,当x趋近于1时,分母的极限不是0,可以直接对法则进行运用和计算。
例: = =
三 极限的四则运算法则在进行函数极限求解时需要注意的事项
第一,对于分式来说,当其分母的极限不等于0时,才能直接运用四则运算法则进行求解。
第二,避免一些常见的错误的认识,例如对c/0=∞,(c为任意的常数),∞-∞=0,∞/∞=0等。
第三,对于无穷多个无穷小量来说,其和未必是无穷小量。
四 极限的四则运算法则的归类
1.x→x0这种情况
第一,当函数f(x)是一个整式,可以对极限的四则运算法则进行直接的运用和计算,或是直接对f(x0)进行求解。
第二,当函数f(x)是一个分式,其分母的极限等于0,而要注意分子的极限并不等于0,那么便可以对极限的四则运算法则进行直接的运用并计算,或者求出f(x0)。
第三,在函数f(x)是个分式的情况下,当分母的极限
为0时,那么分子的极限不等于0,可以先对lim =0
进行求解,再根据无穷小量和无穷大量这之间的关系来进行计算。
第四,当f(x)是个分式,如果其分母的极限还有分子极限都等于0,先让其分子和分母中的公因式进行约分,或者是让含有根号的分子或分母有理化,再进行约分,然后利用极限的四则运算法则来进行计算,从而得到正确的结果。
2.x→∞的情形
在x→∞的情形下,函数的极限值主要是由分子、分母的最高次幂项的次数之间的关系来进行决定的,需要对分子分母的最高次幂项进行分析。
3.其他的情形
在进行求解的过程中有时用到有关无穷小量的运算性质,对于代数和与乘积的极限而言,要注意其所强调的“有限个无穷小量”,但如果这个条件没有办法得到满足,就不能用这个性质来进行极限的求解。
第五,运用极限四则运算法则求极限时常见的错误
在进行数列极限的计算中,对于四则运算法则的运用,需要注意一些问题:对数列极限的加、减和乘的运算法则能够把有限个数列进行推广,在这种情况下,不能对有限个数列的情况进行适用。在这个法则里还指出,“若两个数列都有极限的存在”,这是对数列极限的四则运算法则运用的一个前提条件。在利用极限四则运算法则进行计算时,注重两点,一是法则对于每个参与运算的函数的极限都必须是存在的;二是商的极限的运算法则有个很重要的前提,分母的极限不能为0。当这两个条件中任何一个条件不能满足的时候,不能利用极限的四则运算法则进行计算。
总之,极限的四则运算法则作为极限内容中的重点与难点,需要引起重视,在实际运用时,尤其要注意法则的使用条件,从而避免错误的出现。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询