已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,且AE=FC1=1,求证:E,B,F,D1四点共面

(1)求证:E,B,F,D1四点共面(2)若点G在BC上,BG=2/3,点M在BB1上,GM垂直BF,垂足为H,求证:EM垂直面BCC1B1(3)用a表示截面EBFD1和... (1)求证:E,B,F,D1四点共面
(2)若点G在BC上,BG=2/3,点M在BB1上,GM垂直BF,垂足为H,求证:EM垂直面BCC1B1
(3)用a表示截面EBFD1和面BCC1B1所成锐二面角的大小,求tana
展开
sixshooter
2012-01-28 · TA获得超过383个赞
知道小有建树答主
回答量:66
采纳率:0%
帮助的人:84.2万
展开全部
(1)证明:用几何法
在BB1上取点W,令WB1=1
则WF∥B1C1∥A1D1
又∵WF=B1C1=A1D1
∴A1D1FW是平行四边形
∴D1F∥A1W
又∵EA1∥且=BW=2
∴EA1WB是平行四边形
∴EB∥A1W
∴EB∥D1F
∴:E,B,F,D1共面
(2)证明:用坐标法,部分计算省略
以D1为坐标原点D1A1为x轴,D1C1为y轴,D1D为z轴建立空间直角坐标系
G(7/3,3,3),设M(3,3,z)
则向量GM=(2/3,0,z-3)
显然向量FB=(3,0,2)
因为GM⊥FB
可以求得z=2
∴M(3,3,2)
而E(3,0,2)
∴向量EM=(0,3,0)
∴显然EM∥AB
又∵AB⊥BCC1B1
∴EM⊥BCC1B1
(3)解:
由(2)可知∠EHM即为要求二面角的平面角
所以只需求出MH即可
显然△MHB∽△BCF
所以cos∠BMH=cos∠FBC=3/根号13
又∵BM=1
∴MH=3/根号13
∴tan a=EM/MH=根号13
流离散尽
2012-11-24 · TA获得超过112个赞
知道答主
回答量:49
采纳率:0%
帮助的人:19.7万
展开全部
证明:在DD1上取一点N使得DN=1,
连接CN,EN,显然四边形CFD1N是平行四边形,所以D1F∥CN,
同理四边形DNEA是平行四边形,所以EN∥AD,且EN=AD,又
BC∥AD,且AD=BC,所以EN∥BC,EN=BC,所以四边形CNEB是平行四边形,所以
CN∥BE,所以D1F∥BE,所以E,B,F,D1四点共面;

标准答案。不骗你
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
风牧蓝11
2019-09-11 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:35%
帮助的人:930万
展开全部
解:(1)证明:在DD1上取一点N使得DN=1,连结CN,EN,显然四边形CFDN是平行四边形,所以DF//CN,同理四边形DNEA是平行四边形,所以EN//AD,且EN=AD,又
BC//AD,且AD=BC,所以EN//BC,EN=BC,所以四边形CNEB是平行四边形,所以
CN//BE,所以D1F//BE,所以E,B,F,D1四点共面.
(2)因为GM⊥BF,所以△BCF∽△MBG,所以=,即=,所以MB=1,因为AE=1,所以四边形ABME是矩形,所以EM⊥BB又平面ABB1A1⊥平面BCC1B1,且EM在平面ABB1A1内,所以EM⊥面BCC1B1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式