设函数Y=KX²+(2k+1)x+1(k为实数) 20

1.写出其中两个特殊函数,使图像不全是抛物线,画出图像;2.根据所画图像,猜想出:对任意实数k,函数的图像都具有的特征,并给予证明;3.对任意负实数k,当x<m时,y随着... 1.写出其中两个特殊函数,使图像不全是抛物线,画出图像;
2.根据所画图像,猜想出:对任意实数k,函数的图像都具有的特征,并给予证明;
3.对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值
展开
休丕游爱迷存6831
2012-02-05 · TA获得超过7.7万个赞
知道大有可为答主
回答量:3.9万
采纳率:0%
帮助的人:5443万
展开全部
解答:解:(1)如两个函数为y=x+1,y=x2+3x+1,
函数图形如图所示;
(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),
且与x轴至少有1个交点.证明如下:
将X=0时代入函数中解出Y=1,X=-2时代入函数中解出Y=-1.
所以函数的图象必过定点(0,1),(-2,-1).
又因为当k=0时,函数y=x+1的图象与x轴有一个交点;
当k≠0时,∵△=(2k+1)2-4k=4k2+1>0,所以函数图象与x轴有两个交点.
所以函数y=kx2+(2k+1)x+1的图象与x轴至少有1个交点.

(3)只要写出m≤-1的数都可以.
∵k<0,∴函数y=kx2+(2k+1)x+1的图象在对称轴直线x=- 的左侧,y随x的增大而增大.
根据题意,得m≤- ,而当k<0时,- =-1- >-1,
所以m≤-1
意法半导体(中国)投资有限公司
2023-06-12 广告
单片机,即单片微控制器,也称为单片微型计算机,是将中央处理器(CPU)、存储器(ROM,RAM)、输入/输出接口和其他功能部件集成在一块 在一个小块的集成电路上,从而实现对整个电路或系统的数字式控制。单片机不是完成某一个逻辑功能的芯片,而是... 点击进入详情页
本回答由意法半导体(中国)投资有限公司提供
灬向鈤葵
2012-02-11
知道答主
回答量:15
采纳率:0%
帮助的人:5.2万
展开全部
解答:解:(1)如两个函数为y=x+1,y=x2+3x+1,
函数图形如图所示;
(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),
且与x轴至少有1个交点.证明如下:
将X=0时代入函数中解出Y=1,X=-2时代入函数中解出Y=-1.
所以函数的图象必过定点(0,1),(-2,-1).
又因为当k=0时,函数y=x+1的图象与x轴有一个交点;
当k≠0时,∵△=(2k+1)2-4k=4k2+1>0,所以函数图象与x轴有两个交点.
所以函数y=kx2+(2k+1)x+1的图象与x轴至少有1个交点.

(3)只要写出m≤-1的数都可以.
∵k<0,∴函数y=kx2+(2k+1)x+1的图象在对称轴直线x=- 的左侧,y随x的增大而增大.
根据题意,得m≤- ,而当k<0时,- =-1- >-1,
所以m≤-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
I寒雪I
2013-03-10
知道答主
回答量:38
采纳率:0%
帮助的人:7.9万
展开全部

标准答案

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一只小西柚w
2012-05-23 · TA获得超过150个赞
知道答主
回答量:28
采纳率:0%
帮助的人:7.9万
展开全部
解:(1)如两个函数为y=x+1,y=x2+3x+1,
函数图形如图所示;
(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),
且与x轴至少有1个交点.证明如下:
将X=0时代入函数中解出Y=1,X=-2时代入函数中解出Y=-1.
所以函数的图象必过定点(0,1),(-2,-1).
又因为当k=0时,函数y=x+1的图象与x轴有一个交点;
当k≠0时,∵△=(2k+1)2-4k=4k2+1>0,所以函数图象与x轴有两个交点.
所以函数y=kx2+(2k+1)x+1的图象与x轴至少有1个交点.

(3)∵k<0,∴函数y=kx2+(2k+1)x+1的图象在对称轴直线x=- 的左侧,y随x的增大而增大.
根据题意,得m≤- ,而当k<0时,- =-1- >-1,

参考资料: 转自:http://zhidao.baidu.com/question/326282286.html

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
陌舞花
2012-03-25
知道答主
回答量:25
采纳率:0%
帮助的人:9.3万
展开全部
解:(1)如两个函数为y=x+1,y=x2+3x+1,
函数图形如图所示;
(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),
且与x轴至少有1个交点.证明如下:
将X=0时代入函数中解出Y=1,X=-2时代入函数中解出Y=-1.
所以函数的图象必过定点(0,1),(-2,-1).
又因为当k=0时,函数y=x+1的图象与x轴有一个交点;
当k≠0时,∵△=(2k+1)2-4k=4k2+1>0,所以函数图象与x轴有两个交点.
所以函数y=kx2+(2k+1)x+1的图象与x轴至少有1个交点.

(3)只要写出m≤-1的数都可以.
∵k<0,∴函数y=kx2+(2k+1)x+1的图象在对称轴直线x=- 的左侧,y随x的增大而增大.
根据题意,得m≤- ,而当k<0时,- =-1- >-1,
所以m≤-1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 3条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式