求极限lim x→∞(ln(1+1/x))/arctan1/x
展开全部
分子等价于1/x,分母等价于1/x,结果为1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
无穷近似值代换,ln(1+x)~x~e^x-1,tanx~x~arctanx,=lim(1/x)/(1/x)=1
更多追问追答
追问
答案都是二分之π负二分之π
零不存在
追答
????分子ln(1+1/x)用1/x代换,分母arctan(1/x)用1/x代换
即使非要洛必达也是一样结果=lim((1/x)'/(1+1/x))/((1/x)'/(1+1/x²))=lim(1+1/x²)/(1+1/x)=1
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询