2.4个不同的球,四个不同的盒子,把球全部放入盒内。(1)恰有一个盒子不放球,共有几种方法? (2)恰有 5
3个回答
展开全部
解析:
(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球
所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)
(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此时有144中不同的放法;
(3)恰有2个盒子不放球,那么有类情况:
第一类:放球的两个盒子中一盒有3个球,另一盒有1个球,
此时有:C(4,1)×A(4,2)=4×12=48种不同的放法;
第二类:放球的两个盒子中各有两个球:
此时有:C(3,1)×A(4,2)=3×12=36种不同的放法;
所以:恰有2个盒子不放球,共有48+36=84种不同的放法。
(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球
所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)
(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此时有144中不同的放法;
(3)恰有2个盒子不放球,那么有类情况:
第一类:放球的两个盒子中一盒有3个球,另一盒有1个球,
此时有:C(4,1)×A(4,2)=4×12=48种不同的放法;
第二类:放球的两个盒子中各有两个球:
此时有:C(3,1)×A(4,2)=3×12=36种不同的放法;
所以:恰有2个盒子不放球,共有48+36=84种不同的放法。
展开全部
解析:
(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球
所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)
(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此时有144中不同的放法;
(3)恰有2个盒子不放球,那么有类情况:
第一类:放球的两个盒子中一盒有3个球,另一盒有1个球,
此时有:C(4,1)×A(4,2)=4×12=48种不同的放法;
第二类:放球的两个盒子中各有两个球:
此时有:C(3,1)×A(4,2)=3×12=36种不同的放法;
所以:恰有2个盒子不放球,共有48+36=84种不同的放法。 赞同0| 评论
(1)恰有一个盒子不放球,那么一盒有2个球,另外两盒各1个球
所以共有:C(4,2)×A(4,3)=6×24=144种不同的放法。(注:先将球按2、1、1分组,再排列)
(2)恰有一个盒子内有2个球,那么其他3个盒子中,有两盒各1个球,另1盒没有球,所以此题同第(1)小题解法相同,此时有144中不同的放法;
(3)恰有2个盒子不放球,那么有类情况:
第一类:放球的两个盒子中一盒有3个球,另一盒有1个球,
此时有:C(4,1)×A(4,2)=4×12=48种不同的放法;
第二类:放球的两个盒子中各有两个球:
此时有:C(3,1)×A(4,2)=3×12=36种不同的放法;
所以:恰有2个盒子不放球,共有48+36=84种不同的放法。 赞同0| 评论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
4种
追问
(2)恰有一个盒子内有2个球,共有几种? (3)恰有2个盒子不放球,共有几种放法?
追答
12*6=72.
6*14=84
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询