求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积。
△S≈△Sn=f(i/n)△x=(i/n)^2△x=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]=8/n^3(n+1)(2n+1)/6=8/3+4/n+4...
△S≈△Sn=f(i/n)△x=(i/n)^2△x
=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6
=8/3+4/n+4/3n^2
当n趋近于无穷大时,△Sn=8/3
这里的解答化简怎么得出这里来的
2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6 展开
=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6
=8/3+4/n+4/3n^2
当n趋近于无穷大时,△Sn=8/3
这里的解答化简怎么得出这里来的
2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询