求直线x=0,x=2,y=0与曲线y=x²所围成的曲边梯形的面积。

△S≈△Sn=f(i/n)△x=(i/n)^2△x=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]=8/n^3(n+1)(2n+1)/6=8/3+4/n+4... △S≈△Sn=f(i/n)△x=(i/n)^2△x
=2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6
=8/3+4/n+4/3n^2
当n趋近于无穷大时,△Sn=8/3
这里的解答化简怎么得出这里来的
2/n[(1/n)^2+(2/n)^2+…+(n/n)^2]
=8/n^3(n+1)(2n+1)/6
展开
荔菲厹怀r5
2012-02-02 · TA获得超过5.9万个赞
知道大有可为答主
回答量:3.6万
采纳率:0%
帮助的人:4780万
展开全部
应该是2/n[(2/n)^2+(4/n)^2+…+(2n/n)^2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式