已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn... 40

已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn}的前n项和为... 已知数列{an},{bn}满足:a1=3,当n>=2时,a(n-1)+an=4n;对于任意的正整数n,b1+2b2+…+2^(n-1)bn=nan.设{bn}的前n项和为Sn.(1)计算a2,a3,并求数列{an}的通项公式;(2)求满足13<Sn<14的n的集合 展开
xu_soviet
2012-02-03
知道答主
回答量:23
采纳率:0%
帮助的人:21.2万
展开全部
a(n-1)+an=4n,a(n-2)+a(n-1)=4n-4,a1=3,a2=5,an-a(n-2)=4,故a=2n+1
b1+2b2+…+2^(n-1)bn=nan,b1+2b2+…+2^(n-2)b(n-1)=na(n-1),故bn=(4n-1)/2^(n-1)
故sn=14-(4n+7)(1/2)^(n-1),故n>=6(你给的地方太小了。。。)
飞天龙走天涯
2013-11-24 · TA获得超过2.1万个赞
知道大有可为答主
回答量:9496
采纳率:48%
帮助的人:3732万
展开全部
解:
1.n≥2时,a(n-1)+an=4n (1)
an+a(n+1)=4(n+1) (2)
(2)-(1),a(n+1)-a(n-1)=4,为定值。
a(n+1)-an+an-a(n-1)=4
a(n+1)-an -2=-[an-a(n-1)-2]
a1+a2=4×2 a2=4×2-a1=8-3=5
a2-a1-2=5-3-2=0
数列{a(n+1)-an-2}是各项均为0的常数数列。
a(n+1)-an=2,为定值。数列{an}是以3为首项,2为公差的等差数列。
an=3+2(n-1)=2n+1
数列{an}的通项公式为an=2n+1
2.b1+2b2+...+2^(n-1)×bn=nan (1)
b1+2b2+...+2^(n-2)×b(n-1)=(n-1)a(n-1) (2)
(1)-(2),2^(n-1)×bn=nan-(n-1)a(n-1)=n(2n+1)-(n-1)[2(n-1)+1]=4n-1
bn=(4n-1)/2^(n-1)=n/2^(n-3) -1/2^(n-1)
Sn=1/2^(1-3)+2/2^(2 -3)+...+n/2^(n-3) -[1/2^0+1/2^1+...+1/2^(n-1)]
令Cn=1/2^(1-3)+2/2^(2 -3)+...+n/2^(n-3)
则Cn/2=1/2^(2-3)+2/2^(3-3)+...+(n-1)/2^(n-3)+n/2^(n-2)
Cn-Cn/2=Cn/2=1/2^(1-3)+1/2^(2-3)+...+1/2^(n-3)-n/2^(n-2)
=8(1/2^1+1/2^2+...+1/2ⁿ) -n/2^(n-2)
=8×(1/2)×(1-1/2ⁿ)/(1-1/2) -n/2^(n-2)
=8 -8/2ⁿ -4n/2ⁿ
=8-(4n+8)/2ⁿ
Cn=16-(8n+16)/2ⁿ
Sn=Cn-[1/2^0+1/2+...+1/2^(n-1)]
=16-(8n+16)/2ⁿ -(1-1/2ⁿ)/(1-1/2)
=14-(8n+14)/2ⁿ
13<Sn<14
0<(8n+14)/2ⁿ<1
8n+14<2ⁿ
n≥6
所求集合为{n|n≥6,n∈N+}
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
LK左岸倾城
2013-01-08 · TA获得超过4577个赞
知道大有可为答主
回答量:1567
采纳率:100%
帮助的人:2286万
展开全部
(Ⅰ)在an-1+an=4n中,取n=2,得a1+a2=8,又a1=3,故a2=5.
同样取n=3,可得a2+a3=12,∴a3=7.
有字数限制,其余的看评论~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友b031b94be7
2013-01-03
知道答主
回答量:3
采纳率:0%
帮助的人:4671
展开全部
这是元旦作业吧 嘻嘻
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式