高一数学数列问题求解
2个回答
展开全部
(1)
Sn=a1+a2+...+an
Sn=n^2+2n
n=1, a1=3
for n>=2
an =Sn - S(n-1)
=2n-1 +2
=2n +1
bn=b1.q^(n-1)
=q^(n-1)
b1+b2+b3=13
1+q+q^2=13
q^2+q-12=0
(q+4)(q-3)=0
q=3
bn = 3^(n-1)
(2)
let
S = 1.3^0 +2.3^1+...+n.3^(n-1) (1)
3S = 1.3^1 +2.3^2+...+n.3^n (2)
(2)-(1)
2S = n.3^n - [1+3+3^2+...+3^(n-1) ]
= n.3^n -(1/2)( 3^n - 1)
cn=an.bn
= (2n+1) . 3^(n-1)
= 2[n.3^(n-1) ] + 3^(n-1)
Tn=c1+c2+...+cn
= 2S + (1/2)(3^n -1)
= n.3^n -(1/2)( 3^n - 1) + (1/2)(3^n -1)
= n.3^n
Sn=a1+a2+...+an
Sn=n^2+2n
n=1, a1=3
for n>=2
an =Sn - S(n-1)
=2n-1 +2
=2n +1
bn=b1.q^(n-1)
=q^(n-1)
b1+b2+b3=13
1+q+q^2=13
q^2+q-12=0
(q+4)(q-3)=0
q=3
bn = 3^(n-1)
(2)
let
S = 1.3^0 +2.3^1+...+n.3^(n-1) (1)
3S = 1.3^1 +2.3^2+...+n.3^n (2)
(2)-(1)
2S = n.3^n - [1+3+3^2+...+3^(n-1) ]
= n.3^n -(1/2)( 3^n - 1)
cn=an.bn
= (2n+1) . 3^(n-1)
= 2[n.3^(n-1) ] + 3^(n-1)
Tn=c1+c2+...+cn
= 2S + (1/2)(3^n -1)
= n.3^n -(1/2)( 3^n - 1) + (1/2)(3^n -1)
= n.3^n
追问
第二问看不懂
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询