已知正四棱锥S-ABCD,SA=2根号3,则当该棱锥的体积最大时,它的高为——

hhgsjcs
2012-02-03 · TA获得超过4766个赞
知道大有可为答主
回答量:2176
采纳率:0%
帮助的人:1928万
展开全部
设正四棱锥S-ABCD的高为h,正四棱锥S-ABCD底面为正方形,对角线垂直平分,对角线的一半=√(SA²-h²)=√(12-h²),底面面积=2(12-h²),该棱锥的体积V=2(12-h²)h/3,求导数得:V'=2(12-3h²)/3,当V'>0时,12-3h²>0,0<h<2,当V'<0,h>2,当V'=0,h=2时,该棱锥的体积最大,它的高为2.
嘉芸佛骏琛
2019-07-01 · TA获得超过3696个赞
知道大有可为答主
回答量:3063
采纳率:33%
帮助的人:153万
展开全部
设底正方形边长为2x,正四棱锥高为SH,H为底正方形对角线交点,
则对角线为2√2x,AH=√2x,
SH=√(SA^3-AH^2)=√(12-2x^2),
S正方形ABCD=4x^2,
VS-ABCD=[4x^2√(12-2x^2)]/3,
为求出函数极值,对函数求一阶导数,令其为0,求出驻点,
V'(x)=(8x/3)√(12-2x^2)+4x^2*(1/2)(12-2x^2)^(-1/2)(-4x)/3
=(8x/3)√(12-2x^2)-8x^3/√(12-2x^2)
=0,
x=±2,舍去负值,x=2,
当x<2时,V'(x)>0,而当x>2时,V'(x)<0,
故当x=2时有极大值,
底边长为4,AH=2√2,
高SH=√(12-8)=2。
当高为2时体积最大,为32/3。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式