已知sina=-√5/5,tanb=-3/1且ab属于(-π/2,0)求a+b的值,√2sin(π/4-a)+cos(π/4+b)的值
1个回答
展开全部
sina=-√5/5,所以:cosa=2√5/5;
tana=-1/2; tanb=-1/3;
tan(a+b)=(tana+tanb)/(1-tanatanb)=-1
a+b=-π/4;b+π/4=-a
√2sin(π/4-a)+cos(π/4+b)
=√2[sinπ/4cosa-cosπ/4sina]+cos(-a)
=√2[√2/2cosa-√2/2sina]+cosa
=cosa-sina+cosa
=2cosa-sina
=2·(2√5/5)+√5/5
=√5
tana=-1/2; tanb=-1/3;
tan(a+b)=(tana+tanb)/(1-tanatanb)=-1
a+b=-π/4;b+π/4=-a
√2sin(π/4-a)+cos(π/4+b)
=√2[sinπ/4cosa-cosπ/4sina]+cos(-a)
=√2[√2/2cosa-√2/2sina]+cosa
=cosa-sina+cosa
=2cosa-sina
=2·(2√5/5)+√5/5
=√5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询