已知正项数列〔an〕的前n项和为Sn,且4Sn=(an+1)²,怎么求数列的通项公式
已知正项数列〔an〕的前n项和为Sn,且4Sn=(an+1)²,怎么求数列的通项公式在线急等,谢谢...
已知正项数列〔an〕的前n项和为Sn,且4Sn=(an+1)²,怎么求数列的通项公式在线急等,谢谢
展开
展开全部
4Sn=(an+1)^2
n=1
4a1 =(a1+1)^2
(a1-1)^2 =0
a1=1
for n≥ 2
an = Sn - S(n-1)
4an=(an+1)^2 - (a(n-1)+1)^2
(an)^2 -2an - [a(n-1)]^2 -2a(n-1) =0
[an -a(n-1) ]. [an +a(n-1) ] - 2[an +a(n-1) ] =0
[an +a(n-1) ].[an -a(n-1) -2] =0
an -a(n-1) -2=0
an -a(n-1) =2
=> {an} 是等差数列, d=2
an -a1 =2(n-1)
an -1 = 2n-2
an =2n-1
n=1
4a1 =(a1+1)^2
(a1-1)^2 =0
a1=1
for n≥ 2
an = Sn - S(n-1)
4an=(an+1)^2 - (a(n-1)+1)^2
(an)^2 -2an - [a(n-1)]^2 -2a(n-1) =0
[an -a(n-1) ]. [an +a(n-1) ] - 2[an +a(n-1) ] =0
[an +a(n-1) ].[an -a(n-1) -2] =0
an -a(n-1) -2=0
an -a(n-1) =2
=> {an} 是等差数列, d=2
an -a1 =2(n-1)
an -1 = 2n-2
an =2n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询