
1个回答
展开全部
因为x+1=(a+b+c)/(b+c),则1/(x+1)=(b+c)/(a+b+c)
y+1=(a+b+c)/(a+c),则1/(y+1)=(a+c)/(a+b+c)
z+1=(a+b+c)/(a+b),则1/(z+1)=(a+b)/(a+b+c)
则x/(1+x) + y/(1+y) + z/(1+z)=3-1/(x+1)-1/(y+1)-1/(z+1)=3-(2a+2b+2c)/(a+b+c)=3-2=1
y+1=(a+b+c)/(a+c),则1/(y+1)=(a+c)/(a+b+c)
z+1=(a+b+c)/(a+b),则1/(z+1)=(a+b)/(a+b+c)
则x/(1+x) + y/(1+y) + z/(1+z)=3-1/(x+1)-1/(y+1)-1/(z+1)=3-(2a+2b+2c)/(a+b+c)=3-2=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询