展开全部
设 a:x=b:y=c:z=t
a=tx b=ty c=tz
(a+b+c)³/(x+y+z)²
=(tx+ty+tz)^3/(x+y+z)^2
=t^3(x+y+z)
(a³/x²')+(b³/y²)+(c³/ +(c³/z²)
=(t^3x^3/x^2)+(t^3y^3/y^2)+(t^3z^3/z^2)
=t^3x+t^3y+t^3z
=t^3(x+y+z)
所以
(a³/x²')+(b³/y²)+(c³/ +(c³/z²)=(a+b+c)³/(x+y+z)²
a=tx b=ty c=tz
(a+b+c)³/(x+y+z)²
=(tx+ty+tz)^3/(x+y+z)^2
=t^3(x+y+z)
(a³/x²')+(b³/y²)+(c³/ +(c³/z²)
=(t^3x^3/x^2)+(t^3y^3/y^2)+(t^3z^3/z^2)
=t^3x+t^3y+t^3z
=t^3(x+y+z)
所以
(a³/x²')+(b³/y²)+(c³/ +(c³/z²)=(a+b+c)³/(x+y+z)²
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询