3个回答
展开全部
呵呵,有点简单呢~
(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16
(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16
展开全部
(tanx - tan³x)/(1 + 2tan²x + tan^4(x))
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16
= (tanx - tan³x)/(1 + tan²x)²
= (tanx - tan³x)/(sec²x)²
= (tanx - tan³x) * cos^4(x)
= sinx cos³x - sin³x cosx
= sinx cosx (cos²x - sin²x)
= sinx cosx cos2x
= (1/2) sin2x cos2x
= (1/4) sin4x
最大值是1/4,最小值是-1/4
它们的积是-1/16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询