ln(t+1)/t的积分怎么求
展开全部
∫ ln(t+1)/t dt
=-∫ ln(t+1) d(1/t^2)
=-(1/t^2).ln(t+1)+ ∫ dt/[t^2.(t+1) ]
=-(1/t^2).ln(t+1) -ln|t| -1/t +ln|t+1| + C
let
1/[t^2.(t+1) ]≡ A/t +B/t^2 +C/(t+1)
=>
1≡ At(t+1) +B(t+1) +Ct^2
t=0, => B=1
t=-1, =>C=1
coef. of t^2
A+C =0
A= -1
1/[t^2.(t+1) ]≡ -1/t +1/t^2 +1/(t+1)
∫ dt/[t^2.(t+1) ]
= ∫ [-1/t +1/t^2 +1/(t+1)] dt
=-ln|t| -1/t +ln|t+1| + C'
=-∫ ln(t+1) d(1/t^2)
=-(1/t^2).ln(t+1)+ ∫ dt/[t^2.(t+1) ]
=-(1/t^2).ln(t+1) -ln|t| -1/t +ln|t+1| + C
let
1/[t^2.(t+1) ]≡ A/t +B/t^2 +C/(t+1)
=>
1≡ At(t+1) +B(t+1) +Ct^2
t=0, => B=1
t=-1, =>C=1
coef. of t^2
A+C =0
A= -1
1/[t^2.(t+1) ]≡ -1/t +1/t^2 +1/(t+1)
∫ dt/[t^2.(t+1) ]
= ∫ [-1/t +1/t^2 +1/(t+1)] dt
=-ln|t| -1/t +ln|t+1| + C'
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询