△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,
△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,1,求证:BC=DC.2若AB=5,AC=4,求tan∠DCE的...
△ABC内接于圆O,AB是圆O的直径,点D在圆O上,过点C的切线交AD延长线于于E且AB⊥CE,连接CD,
1,求证:BC=DC.2若AB=5,AC=4,求tan∠DCE的值 展开
1,求证:BC=DC.2若AB=5,AC=4,求tan∠DCE的值 展开
2个回答
展开全部
且AE⊥CE(疑似),按这个来做
证明:
1)因为AB是直径,
所以∠BAC+∠B=90,
因为AE⊥CE
所以∠CAE+∠ECA=90,
因为EC与圆相切
所以∠ECA=∠B(弦切角定理)
所以∠CAE=∠BAC
所以BC=CD(在同圆中,相等的圆周角所对的弦相等)
2)因为EC与圆相切
所以∠ECD=∠CAD(弦切角定理)
所以tan∠DCE=tan∠CAD=BC/AC
在直角三角形ABC中,BC=3
所以tan∠DCE=tan∠CAD=BC/AC=3/4
证明:
1)因为AB是直径,
所以∠BAC+∠B=90,
因为AE⊥CE
所以∠CAE+∠ECA=90,
因为EC与圆相切
所以∠ECA=∠B(弦切角定理)
所以∠CAE=∠BAC
所以BC=CD(在同圆中,相等的圆周角所对的弦相等)
2)因为EC与圆相切
所以∠ECD=∠CAD(弦切角定理)
所以tan∠DCE=tan∠CAD=BC/AC
在直角三角形ABC中,BC=3
所以tan∠DCE=tan∠CAD=BC/AC=3/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
有没有图啊?按照题意这个图画不出来。
因为E在过点C的切线上,又要保证AB⊥CE,只能是C点和A点或者B点重合。
因为E在过点C的切线上,又要保证AB⊥CE,只能是C点和A点或者B点重合。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询