函数中存在反函数的条件是什么?

咪浠W眯兮
高粉答主

推荐于2019-08-06 · 醉心答题,欢迎关注
知道小有建树答主
回答量:783
采纳率:100%
帮助的人:30.3万
展开全部

一函数f若要是一明确的反函数,它必须是一双射函数,即:

(单射)陪域上的每一元素都必须只被f映射到一次:不然其反函数将必须将元素映射到超到一个的值上去。

满射)陪域上的每一元素都必须被f映射到:不然将没有办法对某些元素定义f的反函数。

若f为一实变函数,则若f有一明确反函数,它必通过水平线测试,即一放在f图上的水平线  必对所有实数k,通过且只通过一次。

扩展资料

反函数存在定理:

定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。

在证明这个定理之前先介绍函数的严格单调性。

设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。

证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。

而由于f的严格单增性,对D中任一x'<x,都有y'<y;任一x''>x,都有y''>y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。

任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。

若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。

因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。

如果f在D上严格单减,证明类似。 

参考资料:百度百科-反函数

2406805e
2012-02-07 · TA获得超过122个赞
知道答主
回答量:9
采纳率:0%
帮助的人:6.1万
展开全部
求反函数基本方法是由原函数解得x,交换x、y,再求出原函数值域,即反函数定义域。当由原函数解出的x有多个值时,此函数不存在反函数,例如函数y=x平方-6,对于x有2个y值与之对应,因此不存在反函数。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友4bbfb677e0d
推荐于2017-11-24 · TA获得超过930个赞
知道答主
回答量:134
采纳率:0%
帮助的人:140万
展开全部
函数 在某个区间内 存在反函数的充要条件是 (从映射角度说),象(y) 与 原象(x) 一一对应
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
仇连枝绍壬
2019-10-26 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:24%
帮助的人:1124万
展开全部
是因为要满足一一映射吧。
在定义域内有单调性就是说一个x能够对应一个y,不会出现重复的。反过来也是一样,一个y也要只能对应一个x值才能有反函数
补充:对,就是这样,如果x的定义域是0到正无穷或负无穷是有反函数的,就是y=根号x或-根号x。
当定义域只有一半时,就是一一对应的了。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zbgtemp
2012-02-07
知道答主
回答量:1
采纳率:0%
帮助的人:1654
展开全部
函数中存在返函数的充分必要条件是这个函数必须是“一一对应”的。
这个证明并不复杂,只要你有高中水平的数学基础和数学思维就可以证明它。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式