关于求极限lim∫(0→1)x^n/1+xdx=0
2个回答
展开全部
评注里写的有点纰漏,实际上是可以采用中值定理的,只不过推导过程麻烦一点:
用中值定理得出的解应该为:
lim∫(0→1)[(x^n)/(1+x)]dx=lim(1-0)*[(ξn^n)/(1+ξn)]
因为ξn具体取什么值是由n决定的,所以分数上下的ξ值都应该写作ξn,如果要证明
lim(1-0)*[(ξn^n)/(1+ξn)]=0,则需要证明在取n趋向于无穷大的任意一个n时,这个以n为变量的ξn都不包括1(因为ξn的区间是[0,1])。
要证明这个也不难:
只要证明(x^n)/(1+x)在n大于任意一个数时,x∈[0,1],为单调递增或递减函数就可以了,因为如果函数单增或单减,则ξn必在(0,1)之间,不可能取到1。
(x^n)/(1+x)
求导得:
((x^n)/(1+x))'=(n*x^(n-1)*(1+x)-x^n)/(1+x)^2=(n*x^(n-1)+(n-1)*x^n)/(1+x)^2,用肉眼可以看出n>1,x∈[0,1],时导数都是大于0的,因此ξn取不到1。
用中值定理得出的解应该为:
lim∫(0→1)[(x^n)/(1+x)]dx=lim(1-0)*[(ξn^n)/(1+ξn)]
因为ξn具体取什么值是由n决定的,所以分数上下的ξ值都应该写作ξn,如果要证明
lim(1-0)*[(ξn^n)/(1+ξn)]=0,则需要证明在取n趋向于无穷大的任意一个n时,这个以n为变量的ξn都不包括1(因为ξn的区间是[0,1])。
要证明这个也不难:
只要证明(x^n)/(1+x)在n大于任意一个数时,x∈[0,1],为单调递增或递减函数就可以了,因为如果函数单增或单减,则ξn必在(0,1)之间,不可能取到1。
(x^n)/(1+x)
求导得:
((x^n)/(1+x))'=(n*x^(n-1)*(1+x)-x^n)/(1+x)^2=(n*x^(n-1)+(n-1)*x^n)/(1+x)^2,用肉眼可以看出n>1,x∈[0,1],时导数都是大于0的,因此ξn取不到1。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询