已知函数f(x)=2sin²(π/4+X)+√3cos2x-1,x∈R (1)求函数f(x)的最小正周期和单调增区间
(2)在三角形ABC中,若f(C)=√3,2sinB=cos(A-C)-cos(A+C),求tanA的值...
(2)在三角形ABC中,若f(C)=√3,2sinB=cos(A-C)-cos(A+C),求tanA的值
展开
1个回答
2012-02-07 · 知道合伙人教育行家
关注
展开全部
f(x) = 2sin²(π/4+x)+√3cos2x-1
= {1-cos[2(π/4+x)] + √3cos2x - 1
= -cos(π/2+2x) + √3cos2x
= -sin2x + √3cos2x
= -2(sin2xcosπ/3 - cos2xsinπ/3)
= -2sin(2x-π/3)
最小正周期 = 2π/2 = π
2x-π/3∈(2kπ+π/2,2kπ+3π/2),其中k∈Z时单调增
单调增区间:(kπ+5π/12,kπ+11π/12),其中k∈Z-2sin(2x-π/3)
C∈(0,π)
2C-π/3∈(-π/3,5π/3)
f(C)=√3
-2sin(2x-π/3)=√3
sin(2x-π/3)=-√3/2
2C-π/3=4π/3
C=5π/6
B=π-(A+C)
sinB=sin(A+C)
2sinB=cos(A-C)-cos(A+C)
2sin(A+C)=cos(A-C)-cos(A+C)
2sinAcosC+2cosAsinC = cosAcosC+sinAsinC-(cosAcosC-sinAsinC)
2sinAcosC+2cosAsinC = 2sinAsinC
-√3sinA+cosA= sinA
(√3+1)sinA=cosA
tanA = 1/(√3+1) = (√3-1)/2
= {1-cos[2(π/4+x)] + √3cos2x - 1
= -cos(π/2+2x) + √3cos2x
= -sin2x + √3cos2x
= -2(sin2xcosπ/3 - cos2xsinπ/3)
= -2sin(2x-π/3)
最小正周期 = 2π/2 = π
2x-π/3∈(2kπ+π/2,2kπ+3π/2),其中k∈Z时单调增
单调增区间:(kπ+5π/12,kπ+11π/12),其中k∈Z-2sin(2x-π/3)
C∈(0,π)
2C-π/3∈(-π/3,5π/3)
f(C)=√3
-2sin(2x-π/3)=√3
sin(2x-π/3)=-√3/2
2C-π/3=4π/3
C=5π/6
B=π-(A+C)
sinB=sin(A+C)
2sinB=cos(A-C)-cos(A+C)
2sin(A+C)=cos(A-C)-cos(A+C)
2sinAcosC+2cosAsinC = cosAcosC+sinAsinC-(cosAcosC-sinAsinC)
2sinAcosC+2cosAsinC = 2sinAsinC
-√3sinA+cosA= sinA
(√3+1)sinA=cosA
tanA = 1/(√3+1) = (√3-1)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询